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Table 4. The slopes o f  the normalized lattice parameters 

The first two rows are experimental results, the last two are calcu- 
lated values. Units are GPa -t. 

-(da/dp)/a -(db/dp)/b -(dc/dp)/c Comments 
0.058 0.027 0.035 Experimental data 300 K 
0.036 0.017 0.022 Extrapolated data 0 K 
0-033 0-025 0-020 Williams parameter 
0.035 0-023 0-015 Kitaigorodski parameter 

This discrepancy is especially large for the Euler angle 
~o whereas the slopes of qJ and 0 nevertheless remain 
small. It seems to us that the crystal structure depends  
to some extend on electrostatic long-range interac- 
tions, as already discussed by Murthy, O 'Shea  & 
McDona ld  (1983). Such interactions are not taken 
into account in our model  calculations. 

with W = 1.61. The asterisk means 'measured values' ,  
whereas the r ight-hand side means 'calculated values 
at 0 K'. Surprisingly, it is found that this correction 
of measured values reproduces the calculated slopes 
of the normalized lattice parameters quite reasonably 
(see Table 4). But on the basis of these experimental  
results we cannot  find a clear decision in favour of 
one of the two parameter  sets. We have to mention 
here that the lattice constants (see Table 3) seem to 
favour the Wil l iams set of  parameters.  

To explain the pressure dependence of the structure 
factor, different aspects must be considered. For 
example,  some reflection intensities increase while 
others decrease in intensity when pressure is applied.  
Under  pressure, the reflections are shifted to higher 
scattering angles. In this case the atom form factor 
and the Debye-Wal le r  factor decrease. Under  pres- 
sure, however, the ampli tudes  of the oscillating atoms 
become smaller  and the drop in magni tude of the 
Debye-Wal le r  factor is therefore reduced. The change 
of the phases with pressure occurs in both directions. 
Depending on these effects, the structure factor can 
increase, remain constant or decrease with pressure. 

The Euler angles display only a l inear pressure 
dependence within the pressure range of the present 
experiment.  If we compare  this with the calculated 
Euler angles the dependence  is the same, but neither 
the sign nor the magni tude of the pressure depen- 
dences are reproduced correctly by the calculations. 
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Abstract 

A method of quantitative determinat ion of X-ray 
reflection phases using three-beam multiple diffrac- 
tion is described. This method is derived from the 

dynamical  theory of X-ray diffraction. First-order 
approximat ion  is employed to take care of the multi- 
beam diffraction situation. Polarization and excita- 
tion of wave fields and the Lorentz factor of  crystal 
rotation are considered. For practical purposes,  

0108-7673/88/061065-08503.00 © 1988 International Union of Crystallography 



1066 DETERMINATION OF PHASES IN THREE-BEAM DIFFRACTION. I 

instrumental broadening and crystal mosaicity are 
included in calculating the diffraction intensity 
profiles. It is found that in the theoretical formulation 
the phase-dependent (dynamical) diffraction distri- 
bution can be separated from the phase-independent 
(kinematical) diffraction background. This makes 
possible the quantitative determination of reflection 
phases. 

I. Introduction 

The X-ray phase problem is one of the central 
research subjects in crystallography. Although there 
are several well established methods for phasing, such 
as direct methods, heavy-atom methods, isomorphous 
replacement, molecular replacement and anomalous 
scattering and so on, multiple diffraction has recently 
been demonstrated as a potential technique for solv- 
ing the phase problem. [See, for example, Chang 
(1987) for detailed references.] 

Phase is a relative physical quantity. In order to 
determine this quantity, internal or external referen- 
ces may have to be established in the analysis pro- 
cedures or set into the crystal sample itself. As a 
matter of fact, multiple diffraction involves several 
reflections simultaneously. One of the diffracted 
beams can be treated as a reference for the other 
beams. The interference among these beams modifies 
the intensity of the reference beam. The intensity 
variation thus provides information about the relative 
phase involved in the multi-beam process. Recent 
progress on the use of this particular diffraction tech- 
nique for phase determination has focused on the 
determination of the signs of sine and cosine of the 
relative phase & For non-centrosymmetric crystals, 
the reflection phases have values between 0 and 360 °. 
Quantitative determination of these phases is usually 
desired. This goal, however, has not been reached by 
the present state of the art of the reported multiple- 
beam experiments. Recently, Chang & Tang (1988) 
proposed a method for quantitative determination of 
X-ray phases using the multiple diffraction technique. 
It is the purpose of this paper to give a rather complete 
theoretical formulation for the proposed quantitative 
phase-determination method within the framework 
of the dynamical and kinematical theories of X-ray 
diffraction. In subsequent papers we will report 
phase-determination experiments for perfect and 
imperfect crystals. 

II. Geometry of multiple diffraction 

Multiple diffraction occurs when several sets of 
atomic planes are simultaneously aligned to diffract 
an incident X-ray beam. According to Renninger 
(1937), multiple diffraction can be obtained sys- 
tematically by the following procedures. A crystal is 
first aligned by adjusting the Bragg angle 0c for a 
preselected reflection G, the primary reflection. The 

crystal is then rotated (the azimuthal rotation) around 
the corresponding reciprocal-lattice vector g to bring 
an additional reciprocal-lattice point L (the secon- 
dary reflection) onto the surface of the sphere. Thus, 
multiple diffraction takes place. The interaction 
between the diffracted beams modifies the intensity 
of the primary reflection I~. The distribution of I~ 
v e r s u s  the azimuthal rotation angle ~0 forms a multiple 
diffraction profile. 

Fig. 1 (a) shows the geometry of a three-beam multi- 
ple diffraction in reciprocal space. Points O, G and 
L are the reciprocal-lattice points of the incident, the 
primary and the secondary reflections, respectively. 
! (=OL) is the reciprocal-lattice vector of the L reflec- 
tion. The vectors from the center C of the Ewald 
sphere to O, G and L are the wave vectors ko, kc 
and kL for the O, G and L reflections in vacuum, 
where ko = kc = kL = k = 1/A. A is the wavelength of 
the X-rays used. During the azimuthal rotation, there 
are two positions for the L point touching the surface 
of the Ewald sphere, i.e. ~o_ (in) and ~o. (out) posi- 
tions, depending on whether the L point is initially 
outside or inside the Ewald sphere. According to 
Cole, Chambers & Duun (1962), 

~ ,  = ~o+3,  

where ~o is the initial azimuthal position of the 
reciprocal-lattice point L with respect to the plane of 
incidence of the G reflection (see Fig. 1 b). The angle 
/3 is the angle between the vector component l± and 
the plane of incidence, l± is the component of the 
reciprocal-lattice vector perpendicular to g. 

(a) 

IN 

' I N  

~OUT 

Fig. I. (a) Geometry of multiple diffraction. (b) Top view of (a). 
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II1. Theoretical considerations 

( a ) Fundamental equations of wave fields 

In the dynamical theory of X-ray diffraction of 
Ewald (1917) and Laue (1931), the interaction of 
X-rays with the periodic array of electron density 
under the diffraction conditions is described by Max- 
well's equations. The assumed solutions of these 
equations are of the form of a Bloch function, with 
the involved wave vectors K satisfying Bragg's law, 
i.e. Ko + G = Kc.. Ko and Ko are the wave vectors of 
the incident beam O and the diffracted beam G inside 
the crystal. The moduli D of the Bloch functions, 
representing the wave field amplitudes, are governed 
by the fundamental equation of wave fields 

( k 2 - K ~ ) D o = E X 6 _ L [ K c ,  X(KoXDL)] .  (1) 
L 

The quantity XO_L/47r is the electric susceptibility of 
the G - L  reflection, which is proportional to the 
structure factor Fc±-r: 

XO-L : -(r~A2/'trV)Fo-r = FFC._L. (2) 

r,, is the classical radius of the electron, V is the 
volume of the crystal unit cell. The summation in (1) 
is taken over all the reflections involved, including 
the incident reflection O. For a simple Bragg diffrac- 
tion, the two-beam (O, G) case, the fundamental 
equations take the form 

( k  2 - K2o)Do = Xo_oKo x (Ko x Do) 

+Xo-oKo x (Ko x De±) (3a) 

(k 2 -  K~,)Do = Xo_oKc. x (Kc. x Do) 

+Xo_oKo x (Ko x Do) .  (3b) 

The above two equations can be combined as 

D o  = Xc.-oKc. x (Kc. x Oo)/[( k 2- Ko) + K20Xo-o], 

(4) 

where the relation Kc. x (Kc. x De.) = -K~DC± 
(because Ko is perpendicular to De.) has been 
employed. 

For a three-beam (O, G, L) case, there are three 
fundamental equations of the wave fields Do, De. 
and DL. Expressing Do in terms of Do and DL, we 
obtain 

De. = AG[XC±-oKo X (Ko x Do) 

+ Xo-LKo x (Ko x DD], (5) 

where 

A o =  1/[(k 2 -  K 2 ) +  K2Xo_o]. (6) 

Similarly, the wave field D r  c a n  be expressed as 

DL = A L [ X L - O K L  X (KL X D o )  

+ XL-oKL X (KL X Do)], (7) 

where 

AL = 1/[(k 2 -  K 2 ) +  K2LXo_o]. (8) 

Substituting (7) into (5), we obtain 

D66 = Aoxo_oKo x Kc, 

x {Do + AL(XO-L/Xo-o)[XL-oKl_ x (KL X Do) 

+ XL-oKL x (KL x De.)]}. (9) 

Equation (9) is an exact expression of the recurrent 
relationship between Do and Do in the three-beam 
regime. If, however, an approximate expression of 
Do in terms of the explicit Do is desired, the Do in 
the last term of (9) may be substituted by its two-beam 
form, (4). In comparison with the second term of (9), 
the substituted term is one order of X higher than the 
second term. To a first-order approximation, the third 
term can be dropped from (9), to give 

Do ~- AGX, o_oKc, x Kc. 

x {Do + AL(XO_I.XL-o/XC±-o)KL × (KL X Do)}. 
(10) 

The first term of (10) is nothing more than the two- 
beam Do [see (4)]. The second term represents the 
contribution from the presence of the secondary 
reflection L in the diffraction process. 

( b ) Phases, wave vectors and the polarizations 

Considering the structure factor amplitudes and 
the phases, one can write (10) as 

D o = B , ~ c ± x ~ , o x [ f ) o - B 2 ~ , L X ( K L X I ) o ) ]  (11) 

o r  

Do = B,i~o x Ko x[(1 + B2)Do-  B2(KL.[)o)KL], 

(12  

where 
2 B~ = AoXc,_oK GDo 

B2 = Po exp (iu) 

Po-- r(IFo_, IFL-ol/IFo ol)gUE(k 2-g ) = (13) 
'/2 

u = 6 + arctan [X~_oK ~/(k  2 - K ~)]. 

Here, the approximation of small imaginary part has 
been employed. That is, the term K 2 -  K~ is real, 
which is equal to k2(l+Xb_o).  6 is the invariant 
phase, i.e. 6 = Ot-o + &o-G + &O-L. &O is the phase of 
the G reflection. X~9-o and X~-o are the real and 
imaginary parts of Xo-o. B~ is the modulus of the 
two-beam wave field Do, i.e. De; = B~. K and I)o are 
the unit vectors of K and Do. The coordinates of the 
wave vectors K and the reciprocal-lattice vectors g 
and ! are shown in Fig 2. C is the center of the Ewald 
sphere.The X Z  plane is the plane of incidence of the 
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G reflection. OG and OL are the reciprocal-lattice 
vectors g and !. The angle between g and 1 is a. From 
Fig. 2, the wave vectors K can be expressed as 

Ko = K ( - c o s  0o, 0, - s in  0o) 

Ko = K ( - c o s  0o, 0, sin 0o) (14) 

KL = (l sin a cos/3 - K cos 0o, I sin a sin/3, 

I cos a - K sin 0o), 

where K = nk, with the refractive index n =  1+ 
' 2 Xo-o/  • 
In (l 2), the values of the scalar and vector products 

depend on the polarizations of the incident and 
diffracted wave fields. In multi-beam cases, it is 
known (e.g. Chang, 1984) that a given o--polarized 
incident wave, D~o can excite both o-- and ~r-polar- 
ized diffraction wave fields, for example, say, D,,o(o-) 
and D~o(o-). Similarly, a given D~o can generate 
D~o(~r) and D~c(~').  This can be understood directly 
from the second term of (12). For simplicity, let us 
define that the D~o and D~o are perpendicular to the 
plane of incidence of the G reflection (the XZ  plane) 
and that D,~o and D~o, satisfying the conditions 
l)~ = D,, x k, lie in that plane. Thus D~,o. l ) ~  = 1 
^ ,,, A ^ ^ , 

D~o.  D,~o = cos 20G, D~o.  I)~o = D~,o. D~c = 
D ~  G . D 1,o = 0. 

First, let us consider only the o--polarized incident 
beam, i.e. D~o. D~o is perpendicular to the X Z  plane 
and parallel to the X Y  plane (Fig. 2). According to 
(11), the excited o- and 7r components of the G wave 
field are 

D~.o(o-) = -B l [1  + BoB2] (lS) 

D~o(o-) = B, B2B3, (16) 
where 

Bo = 1 - (1/K)2 sin 2 a sin 2/3 

B3 = ( I / K )  sin a s in /3 [ ( I /K)  sin a cos/3 sin0o 

+ ( I / K )  cos a cos Oo - s i n  20o]. 

The G reflected intensity is equal to 

Io(o-) = ID~o(o-)l 2 + ID.o(o-)l 2 

= B ] [ l + 2 P o B o c o s u + p 2 o ( B 2 + B ] ) ] .  (17) 

Similarly, for a zr-polarized incident wave, D~o, the 
excited o- and zr components of the O wave field take 
the form 

Do.o(Tr) = B~B2B4 (18) 

D,,o(~r) = B l ( - cos  20o - B2Bs), (19) 

where 

n 4 = ( l / K ) 2 ( c o s  a cos Oc 

- - s i n  a cos/3 sin 0O) sin a sin/3 

B5 = cos 2 0 G -  (B3B4)/[ ( l /K)  sin a sin/3]2. 

The corresponding G reflection intensity is 

Io(~r) = ID~o(~r)[ 2 + IO~o(~r)f 

= B2[cos 2 20o + 2PoB5 cos 20o cos u 

+ p2o(B~+ B2)]. (20) 

For an unpolarized incident wave, D,~o = D~o. The 
intensity of the O reflection can be expressed in a 
kinematical approach as 

lc  = [lo(o-) + Io(zr)] /2 

= B2(1 +cos  2 20o) /2  

2 + B1Po cos u[Bo+ B5 cos 20o] 

+ B?P o(B + a )12, (21) 

or in a dynamical approach as 

Ic = [ID.o(o-) + D.o(~r)l 2 + ID=o(o-) + D~,o(Tr)12]/2 

= B2(1 + cos 2 20o) /2  

+ B2po cos u[B0+ (B5 - B3) cos 200] 
2 2 + B ,Po[ (Bo-B4)2+(B5  B3)2]/2. (22) 

It is known that diffraction from an ideally perfect 
crystal is dynamical and diffraction from an ideally 
imperfect crystal is kinematical. Since the usual crys- 
tals lie in between the categories of ideally perfect 
and imperfect crystals and the dynamical effect has 
been considered in the fundamental equations of the 
wave field during the course of the derivation, we 
will adopt hereafter the kinematical intensity 
expression, (21), to take care of the effects from 
kinematical diffraction. It should, however, be noted 
that the subsequent considerations on intensity 
profiles can also be adopted for the dynamical lo 
given in (22). 

(c) Intensity versus Aq~- diffraction intensity profile 

Referring to Figs. 1 and 2, we see that during 
azimuthal rotation, the distance CL varies as/3 varies. 
Thus, the magnitude of the wave vector KL is a 

J ~ l a  , "  

_-~,. 
N X ¢p __~. ,,~ 

~ y  

Fig. 2. The coordinate system for wave vectors and reciprocal- 
lattice vectors. 
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function of /3 :  

KL(/3) = [ (K cos 0o - l sin a cos/3)2+ (K sin 0o 

- / c o s  a ) 2 +  ( / s in  a sin/3)2] ~/2. (23) 

When /3 =/30, multiple diffraction takes place, i.e. 
Kt.(/3o) = K. When/3 is very close to/30, the magni tude 
of the wave vector can be expressed as a Taylor  series 
of (/3 -/30)" 

K(/3) = K ( / 3 o ) + ( d g / d ~ ) l t S o ( / 3 - / 3 o )  

= K - (  W l  K) A~o, (24a) 

where 

Hence 

W = KI sin a sin/3 cos 0o 

Aq~ =/3 - /3o.  (24b) 

K 2 _ K ~. = 2 WAq~. (24c) 

/30 can be derived from (23) by letting KL(/3o)= K. 
Then 

cos/30 = ( l / 2 K  - s i n  0o cos a ) / ( s i n  a cos 0c). (25) 

Substituting (24) into (21), we obtain an expression 
for the multiple diffraction intensity profile: 

l 'o = lo /12  = 1 +2Pa~ cos u + a2P 2, (26) 

where 

P 

cos u 

al 

a2 

(2 

12 = B~(1 +cos  2 20o) /2  

= r(IFo_~ll&_olllF~_ol)K2O 
= [2(Aq~) cos 6 - r/, sin 6 ] Q W  

= ( B o + B s c o s 2 0 o ) / ( l + c o s 2 2 0 c , )  (27) 

=(Bg+ B]+ B]+ B ~ ) l ( l + c o s : 2 0 c , )  

= 1 1 [ ( a ¢ ) 2 + ( n , 1 2 ) 2 ]  ,/2 

2 tt 
, ,  = I/< xo_olWl. 

/2 is the intensity of the two-beam G reflection, rh is 
defined here as the intrinsic kinematical diffraction 
width. In (26) only the second term is phase depen- 
dent. This intensity distribution is called the dynami-  
cal diffraction profile. The last term, a2P 2, which is 
phase independent ,  is denoted as the intrinsic kine- 
matical diffraction intensity profile (a Lorentzian).  In 
order to reveal clearly the phase effect on the diffrac- 
tion intensity I~ ,  Fig. 3 shows the calculated total 
intensity profiles I'~ versus aq~ (the dotted curves), 
the kinematical profiles (the dashed curves) and the 
dynamical  profiles for various 6 values (the solid 
curves). The parameters  used are P~ Q = 6.24 x 10 -5, 
a~ = 0.883, a2 = 0.872, rh = 7.19 x 10 -s and W = 0.16. 
As can be seen from this figure, the dynamical  profiles 
provide most phase information.  For example,  in the 
cases of 6 = 9 0  and 270 °, even though the total 
intensity curves for both cases are alike, i.e. almost 

- ~ I  S=O ° 

0.02 0 -0.02 
`6 S°(DEG) 

20  

-3  

3 : 9 0  ° 
- 4 

l:- 
~__ .d . "  X . . . . .  

T-V--- 
I I 1 

0.02 0 0.02 
,6 qo(DEG) 

-! 
3 : , s o  o 

-30~1 ~ J  .2.. ......... 

0.02 0 -0.02 
`6 ~(DEG) 

I s=45o 
2 o~ ~!I 

I ?l 

0.02 0 -0.02 
A I°(DEG) 

e,l  

- ~  - I  o S-35 
 oI- II 

/ I. 

-(~3~~J- k.~.....~._ 
0.02 0 -0.02 

A q:' (DEG) 

T_~ ~ 

20 

I 

0 

-3 

~" S-- 225 ° ii 

- li..!l- 

I 1 I 
0.02 0 -0.02 

Aq:,(DEG) 

~-~ i:- S= 270 ° 
. .  

tti ! 
' 

2o I!' 
i ........ .-) ~...~ 

- 1 I 1 I 

0.02 0 -0.02 0.02 0 -0.02 
`6q°(DEG) `6 ~(DEG) 

Fig. 3. Calculated total intensity profiles (the dotted curves), kine- 
matical profiles (the dashed curves) and dynamical profiles (the 
solid curves) for various phases. 
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symmetric about za~ = 0, the dynamical profiles are 
quite different. If the dynamical profiles can be 
obtained experimentally, quantitative phase informa- 
tion may be extracted from the second term of (26). 
In practice, the dynamical profile can be obtained by 
subtracting the kinematical Lorentzian profile from 
the total diffraction profile, provided that the kine- 
matical profile takes the experimental conditions into 
account. 

( d ) Instrumental broadening and crystal mosaicity 

In actual experimental situations, the instrumental 
broadening and crystal mosaicity greatly affect the 
kinematical diffraction profile. In reality, the actual 
kinematical profile can be considered as the convo- 
lution of the intrinsic intensity profile, the mosaic 
distribution, and the instrumental broadening func- 
tion. Since the crystal mosaicity and the instrumental 
broadening are usually considered as distributions in 
between Lorentzians and Gaussians, for mathemati- 
cal simplicity, we assume here that they all behave 
as a Lorentzian, as does the Q function. Thus, the 
intrinsic kinematical profile L may be written as 

a2( K4/ 4 W2)( rlFo LI IFL-ol/IF -olf 
I , -  (A~,)2 + (r/,/2) 2 , (28) 

the mosaic distribution IM with mosaic spread r/M : as 

(r/M/27r) 
IM -(a~0)2 + (r/M/2)2 (29) 

and the instrumental broadening function IB with 
instrumental spread r/B as 

(nB/27r) 
Is - ( A~o )2 +( rlB/2)2" (30) 

The convolution I~ * IM * In leads to the actual kine- 
matical diffraction profile: 

i , ,  = Co(IF _LI IFL_ol / IFo_ol  IF';,_ol) 2 

X(rl,/~qM)a2/[(A~o)2+(BT/2)2], (31) 

where the total diffraction width r~r = rli+ riB+ ~M- 
Co is a scaling factor for matching the experimental 
and the calculated kinematical intensities. Co and r/T 
can be determined experimentally. 

It should be noted that the convolution should, in 
principle, be carried out for I~  with respect to both 
A~0 and A0, the angular deviation from 0r (see 
Appendix A). However, referring to (26) and the 
first-order approximation, we see that the two-beam 
intensity distribution 12 is a function of A0 only. The 
convolution of 12 with respect to A0 leads only to the 
general background for multiple diffraction profiles. 
This would not affect the final results of IK. 

( e) Quantitative determination of the phase 

When the actual kinematical intensity profile is 
constructed via (31), the phase-dependent (dynami- 
cal) profile can be obtained by subtracting IK from 
the total profile obtained experimentally. According 
to (26), the values of cos ~ and sin ~ can be deter- 
mined from the second term 2Pa~ cos u, where the r/, 
should be replaced by the actual diffraction width 
r/r. Suppose that the dynamical intensities are I± at 
A~ = + ~ r / 2 .  From (26), the phase ,5 is determined 
from the relations 

cos ~ - s i n  6 = l+/(2Pa~QW) (32) 

- c o s  8 - s i n  ,5 = l_/(2Pa~QW). (33) 

IV. Discussion and concluding remarks 

In the derivation of the expression for the diffraction 
intensity, the first-order approximation has been 
employed. This approximation will, of course, intro- 
duce errors in the quantitative phase determination. 
However, detailed error analysis for some actual 
cases, which will be given in paper II (Tang & Chang, 
1988), shows that this error for Umweganregung 
three-beam diffraction (Renninger, 1937) is small in 
calculating the dynamical diffraction intensity. This 
turns out to cause much smaller errors in phase deter- 
mination. It should, however, be noted that for Auf- 
hellung three-beam diffraction (Renninger, 1937), 
where the primary reflection is not weak, the second- 
order approximation should be employed in order to 
have small errors in the intensity calculation. The 
intensity expressions of this approximation are given 
in Appendix B. 

From (15), (16), (18) and (19), it can be clearly 
seen that the phase ~ takes part only in the excited 
wave fields D,,o(cr) and D~o(Tr). This implies that 
only the cross-excited wave fields D~o(Tr) and 
D,,o(O') provide no coherent phase relation between 
the or- and 7r-polarized waves. These two terms there- 
fore contribute only to the kinematical profile. 

In (27), the intrinsic diffraction width r/i is defined 
k 2  tv s as Xo-o/W. This is, however, one or two orders of 

magnitude smaller than the usual two-beam intrinsic 
width, i.e. k2lx~_ol/W (e.g. Cowley, 1964). This 
difference comes from the boundary conditions. In 
the derivation of (27), no boundary conditions have 
been introduced. The formulation can be used for 
crystals of arbitrary shape. This, of course, introduces 
errors, which, however, can be remedied by the profile 
convolution with crystal mosaic spread and instru- 
mental broadening. 

If the boundary conditions are considered for a 
three-beam symmetric Bragg diffraction, of which the 
primary G reflection is a symmetric Bragg reflection, 
the terms A¢ and r/i in (27) should be replaced 



SHIH-LIN CHANG AND MAU-TSU TANG 1071 

respectively by (the derivation is given in Appendix 
A) 

2 t A~o -> A~ + K Xo_o/2 W (34) 

n, IK~ ,, 1 ,/2/ --" X o - o /  w + G~lql wl, (35) 

where G2 is a geometric factor which is defined in 
Appendix A. X~-o is a small quantity compared with 
Iql '/~. Moreover, because Iql '/2 is the effective electric 
susceptibility of the three-beam interaction (see 
Appendix A), it is also phase dependent. Without 
knowing the triplet phase 6, the modulus of q is 
unknown. This, in turn, will lead to indeterminate 
kinematical intensities. To suppress this indeter- 
minacy, the term Iql '/2 may be replaced by Igo-ol as 
an approximation, i.e. 

/ 2 vr / 
rl,--->K Xo_o/ W+G2lXo_o/W.  (36) 

This approximation is based on the fact that at 
maximum the effective Iql could not exceed the 
electric susceptibility Xo-o of the direct reflection. 
Similarly, rli in (36) is approximately equal to 
k21Xo_ol/W, which is comparable in order of magni- 
tude with the usual two-beam diffraction peak width. 
Evidently, the actual multiple diffraction width will 
not be affected much by this approximation after the 
convolution procedures, because after all the errors 
caused are absorbed in the scaling factor Co. 

The W factor defined in (24b) can be written as 

K /  W =  Aq~/AK. (37) 

This is the Lorentz factor of multi-beam diffraction, 
namely, LF= k~ W=(A~o) / (AK) .  According to 
Chang (1982a, b), the sign of LF is the sign of rotation 
SR, which is defined as 

S R : - s i g n [ A ¢ / A ( 1 / A ) ] : S ± S ( 1 2 - l . g ) ,  (38) 

where S± is positive for the position (in) and negative 
for the position (out). S(12-1 .g) is positive for ! 2 -  
l . g > 0  and negative for 1 2 - l . g < 0 .  It has been 
demonstrated (Chang, 1981, 1982a, b) that the sign 
of cos 6 is the product of the sign St_ of the asymmetry 
of the multiple diffraction intensity profile and the 
sign of rotation SR. In quantitative phase analysis, 
the sign SR should be considered for unambiguous 
phase determination. The simplest way to do this is 
to reverse the intensity profile with respect to Aq~ for 
negative SR. 

In conclusion, we have given some theoretical con- 
siderations on the method of quantitative determina- 
tion of reflection phases. This method separates the 
phase-dependent (dynamical) intensity from the 
kinematical (phase-independent) intensity. The phase 
information, immersed in the kinematical intensity 
background caused by instrumental broadening and 
crystal mosaicity, may now be brought out for analy- 
sis. This method may therefore be used for phase 
determination in both centro- and non-centrosym- 
metric crystals. 
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APPENDIX A 

Expression of K 2 -  K~ for a three-beam symmetric 
Bragg diffraction 

Consider a three-beam (O, G, L) case in which the 
primary reflecting planes G are parallel to the crystal 
surface. For simplicity, the crystal is assumed to be 
infinitely thick. The geometric relation among the 
incident O, the primary G, and the secondary reflec- 
tion L are shown in Fig. 1. From Chang (1984), the 
scalar product Kt-. Kt- can be expressed as 

K~ =Kt-.Kl.  

= k 2 - 2 W ( A q ~ ) + 2 ( l c o s a - g / 2 ) k ~ ,  (A1) 

where k~r is the accommodation (Ewaid, 1917) along 
the crystal-surface normal, which is defined as 

2~o = Xo-o + 2~'3'o (A2) 

with 

¢o=[Zq:(z2+q)l/2]/2+alXo_Lt2/4. (A3) 

3'0 is the direction cosine of Ko with respect to the 
downward crystal surface normal, ft. In (A3), the 
approximation of small imaginary part has been 
employed. The parameters z and q are defined as 

__1 t 1 Z=Xo_o+(AO)sin20o zalx~,~l 2 4alxot-I- (a4) 

q = --XO.LXL.O, (A5) 

where Xc,,t_ is the effective electric susceptibility near 
the exact three-beam point, defined as 

Xo, L = PXo-o - (ao/2)XL_oXo_t-. (A6) 

The terms a, a' and a0 are inversely proportional to 
the resonance failure Go. P is a polarization factor. 
Since G is a symmetric Bragg reflection and multiple 
diffraction takes place at the peak position in the 
range of total reflection, it is justified to assume that 
Iql > Iz21. Thus, with approximation, ~o can be written 
a s  

~ o = ( z - i [ q l ' / 2 ) + a l x o _ L [ 2 / 4 .  (A7) 

Note that the plus and minus signs in (A3) are referred 
to the two possible modes of propagation. In the 
two-beam approximation for three-beam diffraction, 
only the mode with the minus sign is effective for 
very thick crystals. This fact has been taken care of 
in (A7). 

With a few steps of manipulation, the accommoda- 
tion k~" takes the form 

2k~=k[ (A~o) s in20c ,+S- i  q 1 / 2 ] / ~ / O ,  (A8) 
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where 

S = ( a / 4 ) I X o  LI2--(a'/n)Ixo_LI 2. ( a9 )  

By substituting (A8) into (A1), we obtain the 
expression 

K 2 -  K2L= k2( I + X 6 _ o ) -  K2L 
2 r = k Xo_o+2W(Aq~)  - G2(AO)sin20G - S G 2  

+ i[ kx'~_o + G21ql ~/2] (A 10) 

where 

G2= k(l  cos a - g / 2 ) / ' y o .  ( A l l )  

Following the same procedures in deriving (27), the 
quantities, A¢ and r/i in (27) should now be replaced 
by 

Aq~ --> A~o + [k2X'o_o - G2(A0) sin 20c - SG2]/2 W 

(A12) 

rh ~ k2 x~9-o/ W + G2lqll/2/ w. ( A13) 

In (A12), the last two terms are small compared with 
k2Xb_o. Therefore, (A12) can be simplified as 

. 2  t "2 A~o--> Aq~ + K Xo-o /  W. (A14) 

With this approximation in mind, the derivation of 
(26) in the text, where DL is considered as a function 
independent of AO, is justified. 

APPENDIX B 

Second-order approximation for the diffraction 
intensity I 

The expression for the wave field DG, in the second- 
order approximation, can be obtained by substituting 
the two-beam DG, given in (4), into the last term of 
(9): 

D e  = B , g o  x g o  

x[f)o-(B2+B'2)KLx(g£Xf)o)], (B1) 

where 
t 4 B2 = A c A L K  LXG-t.XL-GDo. (B2) 

For a weak primary reflection (Ixo-ol is small), the 
modulus of B2 is much larger than that of B~. For a 
strong primary, In~l is comparable with In21. The 
second-order term B~ should be included in the wave 
field calculation. 

Following the same consideration on polarization 
as given in the text, we obtain 

D~o(cr) = - B , [ 1  + B0(B2+ B~)] (B3) 

D,ro(cr) = B, B3( B2 + B'2) (B4) 

D~.c(Tr) = B,(B2B4+ B~B~) (B5) 

D~o(Tr) = BI ( -  COS 2 8  o - -  B2Bs-  B'2B'5) (B6) 

where 

B~= B 4 + ( l / K )  sin a sin/3 sin 280 

x [ ( l / K )  sin a cos/3 cos Pc 

- ( l / K )  cos a sin 0o - 2  cos 20~] (B7) 

B~ = cos 20o - B3B'n/[(I /K) sin a sin/3]2. (B8) 

The corresponding intensities IG(ty), IG(~r) and lo 
are 

It(or) = B~{1 + 2Po cos u 

X[Bo(l BOBS)+2 ' 2 2 2 
- B2B3]+ Po(Bo+ B 2) 

+ B~( B 2 + B32) - 2 BoB~} (B9) 

lo('rr) = B2{COS 2 2 0 o + 2 P o  cos u 

x [Bs(cos 2 0 G -  B'2B'5)+ B'2B,,B'4] 

2 2 Br42 + Po(B4+ B2)+ B~2( + B~ 2) 

- 2B~B'5 cos 20o} (B10) 

I o = [ I o ( o ' ) +  Io(7"r)]/2 

= B2(1 + cos 2 20G)/2 

2 + B I P  o cos u[B0(1 - BOB'2) 

+ B~B 2 + Bs(cos 2 0 o -  B'2B'5)+ B~BaB'4] 

+ B~{p2o(B2o+ B~+ B~+ BE) 

+ B'22( B~ + BE + B'42 + B'52) 

- 2B~2( Bo + B'~ cos 20o)}/2.  ( B l l )  

By letting B~, B~ and B~ equal zero, we find that 
lo(o') ,  lo(rr )  and lo reduce to their first-order 
expressions, i.e. (17), (20) and (21), respectively. 
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